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Acetylcholinesterase (ACHJeand butyrylcholinesterase (BuCHE Scheme 1. Kinetic Mechanism for Substrate Activation of
catalyze the hydrolysis of choline esters with very high catalytic BUChE-Catalyzed Reactions
efficiency. At neutral pH, cholinesterase reactions -af&'3-fold
faster than spontaneous substrate hydrolysis, a factor that corre-
sponds to 74 kJ mot of transition state stabilizatichThough many
structural features that contribute to the catalytic mechanism have
been illuminate#*—the Ser-His-Glu catalytic triad, the oxyanion K
hole, the acyl binding site, the quaternary ammonium binding-site EAA —— FA+P
a decisive understanding of cholinesterase catalytic power is yet kio
to be had.

Recently, Nicolet et dl.reported crystal structures of human
BuChE and complexes of the enzyme. Surprisingly, in the suppose
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the bottom of a 20 A deep gor§end the substrate activation site
dis thought to coincide with the peripheral site at the mouth of the

unliganded enzyme structure, determined at a resolution of 2.0 A, gprge? Substrate activgtion Is observed because turnover of EAA
electron density that was proximal to the nucleophilic oxygen of via fkeat (= fVmad[El7) is faster than turnover of EA by a factor

the active site Ser198 was interpreted as a bound butyrate. This?: AS Figure 1 shows, the dependence of human BuChE-catalyzed
ligand could be displaced with 3-bromopropionate, which placed NYdrolysis of acetyfs-thiocholine on substrate concentration
the structural assignment on a firm footing. However, it was not shows d(?watlons from M.lchz.;lehd\/lenten klnetlgs that are cor.1-
possible to differentiate cleanly between a complex in which the sistent W|th substrate actlyatlpn. The daFa in Figure 1 were fit to
ligand is bound as a tetrahedral intermediate and one which is a®d 1. derived for the kinetic mechanism of Scheme 1 (see
BUChE-carboxylate complex. Though angular distortions toward Supporting Information for derivation of eq 1). The fit yielded the

H R — fa—1 —
tetrahedrality were noted about the carbonyl carbon of the boundfollowmg_ parameters:Vmax = 20_i 2 MA mIn™?, Ky = :]30 + 20
butyrate, the resolution of the structure and the rather long Ser19g4M: Ka= 3.5+ 0.5 mM, andf = 2.6 & 0.2. Hence, the ternary

yO to butyrate carbonyl carbon distance (2.16 A) suggest that the EAA complex of Scheme 1 turns over to product 2_'6 Fimes faster
complex may be a mixture of tetrahedral intermediate and EP than does the EA complex. Though substrate activation has long
complexes, and perhaps also a covalent acylenzyme been observed for BuChE-catalyzed reactions, an understanding

These unusual observations beg for an experimental probe ofOf its funct_ional _orig_ing remains elusive. F_ortunately, ,ﬂqeec_ond-
the catalytic behavior of BUChE that can address the nature of ary de_uterlum k_|net|c isotope effects detailed below shed important
substrate hybridization changes that accompany catalytic turnover"€W light on this phenomenon.
in the steady state. Herein we report on the measurements of
secondarys-deuterium kinetic isotope effects with isotopomers of V= Vinad Al + BIATK,)
acetylthiocholine (i.e., acetylgthiocholine, L= H or 2H) that "KL+ BIAYV K,) + Al + [AVK,)
provide such a prob&Secondary deuterium isotope effects are
inverse (<1.00) when a sphybridized reactant is converted to a The least-squares uncertainties that result from the fit in Figure
quasi-tetrahedral transition state and norm¥al.00) when an sp 1 preclude determination of secondary isotope effects on the kinetic
reactant state is converted to a transition state that has greateparameters from such experiments. An alternate approach is to
trigonal planar charactér. determine the secondary isotope effect on the initial rate Pe.,
BuChE-catalyzed reactions often show substrate activation at = ¢"%,°3) as a function of substrate concentration. As Figure 2
high substrate concentratiohsAn interaction mechanism that  shows, the isotope effect on the initial rate increases hyperbolically
accords with substrate activation is outlined in Scheme 1. E and A as the substrate concentration increases. These data were fit to eq
are the enzyme and substrate, respectively, EA is the Michaelis 2, which provides a quantitative analysis and extrapolation of the
complex, F is the acylenzyme intermediate, and EAA is the ternary isotope effects:
complex of enzyme with substrate monomers bound at both the

@)

active and substrate activation sites. The active site of BUChE is at BIA] [A] BIA
1+ — [A] 1+K— +Km1+ D3
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50 were fit to the integrated form of the MichaeliMenten equatiof?

The experiments utilized an initial substrate concentration fA]

0.2 mM that was well beloviKa, and therefore, the kinetics were

not complicated by substrate activation. These experiments gave

the following values for the isotope effects on the Michaelis

040 Menten parameters®3Vy.x = 1.02 £+ 0.05 and®3V/K = 0.97 +

0.06. Both values are within experimental error of an isotope effect

of 1.00, and the value fd3V/K indeed agrees with that determined

in Figure 2. Importantly, neither isotope effect approaches the

10 normal isotope effect on substrate-activatéga. Only upon

o 5 o 15 2 substrate activation is the marked normal isotope effect expressed.

0 1IATCH] (mM") The observation of a covalent tetrahedral adduct in the crystal
0 10 20 30 structure of human BuCHKEsuggests that turnover of the acylen-

[ATCh] (mM) zyme intermediate is rate limiting fofmax Therefore, the sizable
Figure 1. Dependence of initial rate on concentration of acéty- normal isotope effect on substrate-activatégx suggests that in

thiocholine. Reactions were monitored by the coupled assay of Ellman et the FA complex allosteric modulation of the active site is ac-
al®at 27.0+ 0.1°C and pH= 7.24 in 0.1 M sodium phosphate buffer that companied by stabilization of the tetrahedral adduct, which then

contained 0.5 mM DTNB, 0.03 mg/mL of BSA, and 93 pM recombinant  hecomes the predominant accumulating species in the steady state.

human BuChE. Reactions were followedat= 412 nm on a Molecular
Devices SPECTRAux PLUS®4UV —visible microplate spectrophotometer. The trover of the tetrahedral adduct would be marked by

The solid line is least-squares fit to eq 1 of the text. The double-reciprocal rehybridizatioh from .sf) toward s in the dt_aveloping acetate
plot in the inset clearly shows substrate activation. product, consistent with the observed normal isotope effect. Hence,

observations from X-ray crystallography and from isotope effects
conspire to suggest that an important element in the catalytic power
of cholinesterases is their ability to stabilize tetrahedral intermediates
1.3 1 that are, in corresponding honenzymatic reactions, high-energy and
metastable species.
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